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A stochastic treatment of the dynamics of an integer spin 

0 Cohendet, Ph Combet, M Sirugue and M Sirugue-Collin$ 
Centre de Physique Thioriquel, CNRS-Luminy, Case 907, F-13288, Marseille Cedex 09, 
France 

Received 9 November 1987 

Abstract. We prove that, for the general dynamics of a quantum spin, there exists a 
stochastic process in an extended phase space which at each time allows us to compute 
correlations between the different components of the spin. The schema is limited to integer 
spins, but some possibilities of extension are discussed as well as the connection with 
Nelson’s stochastic dynamics. 

1. Introduction 

Nelson’s programme (1967, 1985) for giving a new physical interpretation of the 
non-relativistic quantum dynamics is fascinating. In particular, its interpretation of 
the Schrodinger equation in configuration space in terms of the Fokker-Planck equation 
of a Newtonian diffusion process is quite interesting, both on conceptual grounds and 
for the possibility of suggesting questions and even tests (see, e.g., Truman and Lewis 
(1986) and Blanchard et a1 (1987) for a review). 

However, Nelson insists on the universality of Brownian motion whose diffusion 
coefficient is J h  in the configuration space description of quantum dynamics (mass 
is taken equal to one). This causes a problem if one tries to extend the programme 
to an equivalent description of quantum dynamics, in momentum space for instance 
(De Angelis 1986) or even to more general polarisations of phase space. However, 
these questions are natural if one wants to mimic what is done in classical mechanics. 

In fact, everything works if one still uses infinitely divisible processes but not 
diffusions any more. Then it is very difficult to compare processes corresponding to 
different polarisations. 

Another question one can ask oneself is about mixed states (e.g. non-zero tem- 
perature states). Almost nothing is known about this problem (see, however, Jaekel 
and Pignon 1984). 

The second question is completely solved by our approach which uses the Wigner 
function and not the wavefunction. This is in our opinion, the great advantage of this 
approach since it does not give ambiguities as in the paper quoted above when at least 
two eigenvalues of the Hamiltonian are degenerate. On the other hand, it treats both 
the intrinsic and external stochasticity on the same footing. 

The first question is not solved except for the case of the dynamics of an integer 
spin. This case, of course, is not the most interesting one but it has a flavour of the 
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continuous case and we hope to extend our  results to the case of a continuous system 
with appropriate cutoffs. As a side remark it is amusing to see that, for our techniques, 
the requirement that the spin is integer has some flavour of the spin statistics theorem. 

Our paper is organised as follows. In § 2 we describe in a convenient way the 
algebra of observables of a spin s as well as its states. Then we define what we call 
a dynamics. In  § 3 we give the main result (proposition 3.2) for the existence of a 
stochastic process in an  extended phase space which allows us to compute any 
correlation between different components of the spin. Finally proposition 3.3 gives 
the characterisation of these processes which are associated with a quantum evolution. 

For a general study of Markov processes we refer to the classical books of Gihman 
and  Skorohod (1969). 

2. Integer spin system. Observables and states 

The system we have in mind is a particle with integer spin s, ignoring all the other 
degrees of freedom: position, momentum, etc. Of course, this system is quite simple 
and well known but to formulate the main results we shall prove in the last section 
that we need an  unusual formalism. 

First let us describe it in a conventional way. The observable of this system is a 
spin S with three components S = {Sy, Sv,  S,} in an  orthonormal basis. These com- 
ponents d o  not commute but satisfy 

[S , ,S , l= iS ,  (2.1) 
and the cyclic permutations ( h ,  the Planck constant, is taken equal to 1). 

Furthermore 

S’,+ Sf + s: = s(s + l)U 
and 

spectrum{ S , }  = { -s, -s + 1, . . . , s - 1,s) .  (2.3) 
All this makes the algebra generated by the S,, S,. and S, isomorphic to Mz,+l (the 
complex matrices with 2s + 1 columns and lines) acting on the (pure) state space C’”l. 

Due to commutation relations (2.1) only one component, traditionally S, ,  can be 
observed. 

Let us introduce an  exotic description of the system. 
CZs+l is isomorphic to t 2 ( Z 2 s + , )  where Z2r+,  is the cyclic group of order 2s+1.  

Then let us define the following operators for p E f 2 ( Z 2 s + l ) :  

m, n, k E { -s, -s + 1, . . . , s}, the operation k - 2m being of course interpreted 
mod 2s+ 1. 

Lemma 2.1. The operators W,, are unitary and satisfy 

w;,= w-,-n 

The proof is obvious. 
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These operators have the properties of a Weyl system (Weyl 1931) in the continuous 
case. We call them Weyl operators. 

The next proposition also gives a property of the Weyl system which is shared by 
the continuous Weyl operators. 

Proposition 2.2. The set of Weyl operators { W,,,n}m,nE(-s,...,S) is a system of unitary 
operators, linearly independent, which generates the algebra a( t‘2(Z2s+l)) of operators 
on [2@2S+l) .  

The proof is almost obvious. It comes essentially from the Stone-von Neumann- 
Mackey theorem (von Neumann 1955, Mackey 1963) if one notices that the set 
{ Wmn}m,nE~-s,...,S) is a central extension of the group ZZs+l  x Z2s+l by the 2-cocycle 

4i 7~ 
( m , n ) x ( m ’ , n ’ ) + e x p  (m’n - mn’) 

and that 2s + 1 is odd. On the other hand, the result can be proved directly if one 
remarks that the { W,,,,,} are orthogonal with respect to the Hilbert-Schmidt product 
and that their number matches the dimension of 93(t?2(Z2s+1)). 

t2(Z2r+l)  contains different classical orthonormal bases: 

{ ~ h l h E ( - s , . . . , s )  such that Sh(k) = ( 2 s +  l)”zSh,k k E {-s,. . . , S} (2.7) 

2i.nkh 
{ X h  1 h E (-s, ..., s )  such that X h  ( k, = exp( G) kE{-s, . . .  

These bases are exchanged by the Fourier transform 9 from k‘2(Z2s+l) to t 2 ( Z 2 s + l ) :  

9 is an isometry and satisfies with respect to the Weyl operators 

9 w m * , 9 *  = w,,-,,, (2.10) 

p a 0  (2.1 1) 

Tr(p)  = 1. (2.12) 

m, n E {-s, . . . , s}. 

A state of the system is given by a density matrix p on k‘2(Zzs+,) such that 

Equivalently it is completely defined by the function Z ( m ,  n)  from (Z2,+1)2 to C 

1 
2 s + l  Z ( m ,  n)=- Tr(pWt?l,). (2.13) 

Indeed p can be decomposed on the W,,,, which are independent but also orthogonal 
with respect to the trace, hence the following proposition. 

Proposition 2.3. If E is a function from (Z2s+I)2  to 02 the necessary and sufficient 
condition for Z to be of the form (2.13) is 

1 
E(0,O) = - 

2 s +  1 (2.14) 

(2.15) 

for all N and for all choices of { A , } , = ,  N ,  A ,  E C. Again, the proof is obvious. 
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A pure state, namely the case where p is a projection on the normalised vector 
Q E 1 2 ( Z z s + l ) ,  corresponds to the following Zv: 

(2.16) 

As in the continuous case one has the following proposition (Fano 1957, Grossmann 
1976, Combe et a1 1983). 

Proposition 2.4. Let P be the symmetry in 12(Z2s+ l ) :  

(PQ)(k)  = d - k )  k E { - S , .  , . , s}  

and let p be a density matrix on l 2 ( Z , , + , ) .  Then 

= Tr{pWabP} U, ~ E { - s , .  . . , s}. 

The proof is a matter of computation. 

(2.17) 

Then one can define the analogue of the Wigner functions (Wigner 1932). 

Dejinition 2.5. If p is a density matrix then 

1 
W ( U ,  b)=- Tr(p wabp) 2 s+ l  

U, b E {-s,. . . , S }  (2.18) 

as a function of ( z ~ ~ + ~ ) ~  is a Wignerfunction. 

In the case of a pure state where p corresponds to the orthogonal projection on the 
normalised vector cp of .!?2(Z2s+,) it has the expression 

1 4i 7r 
W ( a ,  b)=- 2s + 1 h = - s  exp(-hb)ip(h+a)q(a-h). 2 s + l  (2.19) 

As in the continuous case this suggests we define new operators, the Fano operators, 
as below. 

Dejinition 2.6 (Fano 1957, Grossmann 1976). The Fano operators Aab are defined by 

A a b =  U, b E {-S, . . . , s } .  (2.20) 

A:b = h o b  (2.21) 

( L a b ) '  = 1 2 s t l  (2.22) 

Proposition 2.7. The Fano operators satisfy the following properties: 

Tr(A:bAa'b')= (2S+ 1)6,,,98b,b, (2.23) 

(2.24) 

(2.25) 

Aabiia,b,=eXp( 2s+l(Ub'-bU') 8i7r h - a , - b ' & - a - b  

Finally, Wigner functions have properties which are the same as in the continuous 

) 
W:bAmnWab=Am->a n - 2 b .  

All these properties are obvious. 

case. 
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Proposition 2.8. If W is a Wigner function then 
( i )  W is real valued, 
(ii) W is bounded by 1/(2s+ 1 )  in modulus, 
(iii) ~ m . n E ( - - S , . . . . S ~  'Wm,  n )  = 1, 
(iv) W is the symplectic Fourier transform of a &positive function (defined by 

Nevertheless W is not a probability density on (Z2s+l )2  since there are explicit 

Before closing the section let us quote two results which are important for the 

form (2.14) and (2.15)). 

cases (easy to construct) where it is negative. 

following. 

Lemma 2.9. If W is a Wigner function such that 

1 
2 s + 1  W(a, b )  =- W P L )  

then p can be reconstructed as 

P =  W ( a ,  b ) A a b  
o , b t ( - s ,  ..., s) 

(2.26) 

(2.27) 

and moreover formula (2.27) defines a density matrix associated with any function W 
which is the symplectic Fourier transform of a function satisfying (2.14) and (2.15). 
Hence correspondence between density matrices and Wigner functions is bijective. 

Lemma 2.10. If W is a Wigner function whose density matrix is the orthogonal 
projection on the normalised vector (p of k'2(Z2s+1) then 

c W(a,  b )  = I d a ) l '  
b = - s  

W ( a ,  b )  = lTcp(b)l'. 
O = - S  

Again the proof is a matter of computation. 

(2.28) 

(2.29) 

Now we shall describe in this language the dynamics. It is given by a Hamiltonian 
operator H E  9?(k'2(Z2s+l)) which defines the evolution equation of any density matrix 
p,,  t E R, through the Heisenberg equation 

(2.30) 

plus an initial condition or, equivalently, of any 'wavefunction' cp in k'2(Z2s+l) through 
the Schrodinger equation 

d 
d t  

i -(p, = H(pr (2.31) 

plus an initial condition. 

operators and in term of the Fano operators: 
H belonging to 93(k'2(Z2s+,) )  has a decomposition both in terms of the Weyl 

(2.32) 

(2.33) 
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where &(U, b) = &(2a, 2b), & being the symplectic Fourier transform of 2: 

X is real in order to define a conservative dynamics. For the sake of simplicity let us 
assume that & is positive. One can do without this assumption. However, the formulae 
become cumbersome to deal with. 

The evolution equation (2.30) has an immediate transcription for the time evolution 
of Wigner functions, viz 
-Wf(u, d b ) =  C i%(u’, b‘)exp(*(b’a-u’b) 
d t  a’ ,b’c ( - 5 ,  .... s }  2s+ 1 

x { Wf(u + U’, b +  b’) - W,(U - U ’ ,  b - b’)} (2.34) 

plus an initial condition. 
In his original paper Wigner (1932) stresses that this equation looks like the forward 

Kolmogorov equation of a jump process in phase space. However two things prevent 
us from going further in this direction: 

( i )  transition probabilities would be negative, and 
(ii) W is not a probability density since it can assume negative values. 
Another possibility would be of interpreting (2.35) as the backward Kolmogorov 

equation of a stochastic process. This cannot be done in the phase space (Z2s+L)2  itself 
but in an extended one by S2 = {kl}.  This schema has been successfully developed in 
Combe et a1 (1984) and Blanchard and Sirugue (1985). 

This approach, however, is not in the spirit of Nelson’s stochastic mechanics and 
in the next section we show that a stochastic scheme interpreting (2.34) as the trace 
of a forward Kolmogorov equation for a jump process in an extended phase space 
does exist. 

3. Stochastic mechanics in extended phase space 

The purpose of this section is to prove the main result of this paper, namely, given a 
quantum evolution of the spin, there exists in an extended phase space a stochastic 
process which allows us to compute at each time correlations between the different 
components of the spin. It does not reproduce the correlations themselves since 
quantum theory cannot be reduced to a classical theory (von Neumann 1955). 

Let us be more precise. Let CT is a dichotomic variable, viz C T E  {*1}. Then, if W 
is a Wigner function 

G ( m ,  n, CT) = (” + aW( m, n )  
4 ( 2 s + l )  2 s + 1  (3.1) 

is a function of (Z2r+,)2x{*1} with the following properties. 
(i) G( m, n, v) is real, positive, and furthermore (3.2) 

1 1 
1 

s G( rn, n, CT) s 
4(2s+ 1)2 4(2s + 1 ) 2  

J 

(ii) G ( m , n , c r ) = l  
m.n E { - 5,  .... s } 

U = * )  

(3.3) 
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(iii) i f f  is a function on ( E 2 s i 1 ) 2  then the quantum expectation value of f  is just 

(3.4) 

These properties show that G can be interpreted as a probability density on extended 
phase space (Z2s+1)2 x{*l} and that it allows us to compute any quantum correlation 
W ( m ,  n )  between different components of the spin, at a given time. 

The next remark is almost obvious. 

Lemma 3.1. If t + W,( m, n )  is a family of Wigner functions which satisfy an evolution 
equation (2.34) the associated G, function obeys the same equation which can be 
rewritten as 

%‘(m’-m, n ‘ - n ) G , ( m ’ ,  n ’ , a ) .  
d 41T 

- G , ( m ,  n , u ) =  c -2sin 
d t  m ’ , n ’ e  (-s, ..., s )  

(3 .5 )  
Once this is done it is sufficient to compute the generator of the process to use the 
technique of Guerra and Marra (1984) to transform (3.5) into a forward Kolmogorov 
equation for a stochastic process which is, of course, state dependent. 

Proposition 3.2. There exists a stochastic Markov process X ,  living in (Z2,+I)2 x {*l} 
whose density is given at each time by G , ( m ,  n, a )  and whose forward Kolmogorov 
equation is 

d 
- G , ( m ,  n, a ) =  A,(m,  n , u ;  m’,  n ’ , u ’ ) G , ( m ’ ,  n ’ , ~ ’ )  (3 .6 )  
dt  m ’ , n ’ s { - s ,  ..., s} 

U’€ { *  1) 

where 

A,(m, n, a;  m’,  n ’ ,  a‘) 

( m n ‘ -  m ’ n )  
= 2[ 1 

G , ( m ’ ,  n’, a’) 
x % ( m ’ -  m, n ’ -  n )  if (m‘, n’) # (m, n )  (3 .7)  

A,( m, n, a;  m, n, a‘) = 0 ifa#a’ 

The proof is a matter of computation. 

To be complete we want to characterise those Markov processes which are associated 
with a quantum evolution. This is done in the next proposition. 

Proposition 3.3. Let A , ( m ,  n, a; m’,  n’, a‘) be the generator of a Markov process in 
(Z2s+l)2x{*1} and G , ( m ,  n, a )  be the probability density of this process. Then the 
necessary and sufficient condition for the existence of a quantum dynamics in the 
previous sense is the existence of an operator B on B(t‘2((Z!2s+l)2)) such that 

c aA,(m, n, a;  m‘,  n ’ , a ’ ) G , ( m ’ ,  n ’ , a ’ )  
U,“€{* I }  



2882 0 Cohendet et a1 

(3.9) 

The proof is tedious but can be done if one remarks that H allows us to reconstruct 
the Hamiltonian flow in /2(Z2s+,)  by the Dyson series. 

To be complete let us remark that, if it exists, %' is given by 

(3.10) 

In this scheme the quantum mechanics of an integer spin appears as the mixture 
of two classical schemes of a spin. However at random times the schemes are exchanged 
and that prevents us reducing the quantum theory to a classical one. 

The extension of the previous results to half-integer spin is not directly possible 
since the natural group Zzs is not a divisible group. That would amount to dealing 
with fermions rather than bosons. 

The continuous case cannot be treated, at least directly, with such a technique. 
Indeed, phase space is no longer compact and the corresponding G, one can define 
out of a Wigner function is no longer a probability density. However, one can deal 
with non-bounded positive measures but then, if everything works formally, from a 
technical point of view it is difficult in a rigorous way to prove the existence of the 
stochastic Markov processes (Cohendet 1987). 

As a last remark the choice of {kl} for the extra variable U is not the only choice 
one can imagine provided it is a compact space, e.g. the torus would work as well. 
However, in view of the measure one has to put on this space, {*I} is a minimal choice. 
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